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Abstract
The stick–slip motion of an atomic force microscope cantilever on highly oriented pyrolytic
graphite is investigated experimentally and theoretically. It is shown that the interstitial slips of
the cantilever tip at high pulling velocities are thermally activated events and can be described
with a single-step rate equation. On the other hand, at slow pulling, the statistics of the slip
events deviates from the predictions of the single-step rate approach, signaling the onset of
contact ageing, that is, gradual changes of the contact properties in each stick phase. A model is
introduced which takes the contact ageing effect into account, and whose predictions are in
good agreement with the experimental results for all pulling velocities.

1. Introduction

The invention [1] and constant further development [2, 3]
of atomic force microscopy (AFM) has led to tremendous
progress in our abilities to experimentally characterize the
properties of nanosized objects. Among the first research
applications of AFM was the pioneering work by Mate
et al [4] dedicated to friction at the nanoscale. Friction
force microscopy (FFM), or the study of tribological
properties of materials on such length scales, is not only
important for fundamental research, but also for a number of
(nano)technological applications.

In a typical FFM experiment [4], the tip of an AFM
cantilever is brought into contact with a uniformly moving
atomically clean surface while a normal load FN is applied
(see figure 1). The interaction between the tip and the surface
leads to torsional deformations of the cantilever beam. One
can determine the magnitude of these deformations by optical
means and thus deduce the resulting elastic force fexp(t),
which, by Newton’s third law, equals the instantaneous force of
friction. As a rule, the temporal evolution of the friction force
proceeds in a sawtooth-like pattern (see figure 2(b) below). The
central quantity of interest is the behavior of the time-averaged
friction force

f̄ := lim
t→∞

1

t

∫ t

0
dt ′ fexp(t

′) (1)

as a function of the pulling velocity v.

Figure 1. Schematic illustration of an FFM experiment.

It has been experimentally established [5–11] that the
average force increases approximately logarithmically with
velocity. This experimental finding has been interpreted using
the Prandtl–Tomlinson model [12, 13] modified by inclusion of
noise effects. Qualitatively, the physical picture is as follows.
The motion of the cantilever tip consists of alternating stick
and slip phases. During a stick phase, the tip is confined
within one of the lattice sites of the surface and, in the frame of
reference of the cantilever, moves together with it. This leads
to an increase of the elastic deformation within the cantilever
and the surface in the contact region, and, correspondingly, to
the reduction of the potential barrier separating the tip from
the next lattice site. At some point, the thermal noise, which
is inevitably present in any physical system, drives the tip
over this barrier into the new site, and the new stick phase
begins.
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Figure 2. (a) A representative lateral force map on HOPG obtained at a pulling velocity v = 100 nm s−1. The horizontal lines indicate the
scan lines which were used for the collection of friction data. (b) The experimentally observed lateral force fexp(t) during one typical line scan
from (a). The equidistant parallel lines result from the fit of the stick segments with (5) as detailed in the text. The circles show the positions
of the slip events.

To model this process quantitatively, Kramers’ theory of
thermally activated transitions is often used [7, 10, 11, 14–19].
Within this approach, the probability p(t) of staying within the
same potential well of the tip–sample interaction potential up
to time t decays according to the single-step reaction equation

ṗ(t) = −ω( f (t))p(t), (2)

where the exponentially disadvantaged back-transitions are
neglected. The rate ω( f (t)) of thermally activated jumps into
the next well under the action of the elastic force f (t) is given
by the Kramers–Arrhenius law

ω( f ) = ν0 exp(−�E( f )/kT ). (3)

Here, the attempt frequency ν0 depends only weakly on f , and
�E( f ) is the force-dependent height of the potential barrier,
which can be approximated as

�E( f ) = �E0 (1 − f/F0)
α (4)

where �E0 is the force-free height of the barrier that the tip
needs to surmount in order to slip into the next lattice site,
F0 is the critical force at which the barrier disappears, and the
exponent α controls how fast the barrier height goes from the
initial value �E0 at f = 0 to zero at f = F0. Usually, this
exponent is close to 1 [8, 10, 11, 14, 15, 20]. Since the rate
ω( f ) determines the number of slips per unit time, the force–
velocity relation has the generic form v ∝ ω( f̄slip) with f̄slip

being the average force at the moment of slip [16, 17]; taking
into account (3), we find that f̄slip ∝ | ln v|1/α .

Although this relation between the pulling velocity and
the friction force has been shown to agree well with the
experimental data [11], we argue that this success does
not prove unambiguously the validity of the simple rate
equation (2) for the description of the stick–slip process.
Indeed, apart from thermal noise effects encapsulated in (2),
other sources of randomness of jump events are conceivable in
experiments. Some of them are as follows.

The tip–substrate contact is a complicated system
involving many atoms. After each slip, the contact is
formed anew, and there is no a priori reason to expect
that all participating atoms will establish the same positions
and interactions in the new stick phase as in the previous
one. Furthermore, the cantilever tip may even acquire or
lose surface atoms during a stick–slip cycle. Because of
the exponential form of the rate (3), even a small variation
of contact properties may result in large variations of ω( f )

in the rate equation (2). Finally, it has been suggested
recently [21, 22] that the tip forms multiple contacts, whose
behavior cannot be captured by a single-step rate equation (2),
but rather requires a more complicated multiple-step model
describing several possible bonds in the contact region.

Because the rate ω( f ) determines the number of
interstitial transitions per unit time, the logarithmic force–
velocity relation reflects the exponential character of this
function. Since in all cases mentioned above it is not necessary
to abandon the rate description concept, but rather amend it,
all of these possibilities preserve the logarithmic character
of the force–velocity relation. However, when fitting the
experimental force–velocity curve according to the simple
rate equation (2) [7, 11], it remains unclear what exactly the
resulting fitting parameters characterize—a single tip–sample
contact, the average effect of differently formed contacts in
each stick phase, multicontact connection between the tip
and the substrate, or possibly some other mechanism not
mentioned above? To resolve this ambiguity, it is imperative
to directly check the validity of the rate equation itself (2) in
each experimental situation.

In the next section, the method of data analysis originally
presented in the context of dynamic force spectroscopy [23]
is adapted to the present case in order to test the validity
of the single-step rate equation (2) based on the statistics
of the slip events and, upon confirming the validity of (2),
accurately deduce the rate ω( f ). Then, the details of the
experiment are presented and this method of data analysis is
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applied to nanofriction on highly oriented pyrolytic graphite
(HOPG). It has been found in the work [24] that the rate
equation (2) is experimentally valid only at relatively large
pulling velocities, and this finding was interpreted as evidence
for contact ageing, i.e., gradual change of contact properties
with time due to formation of additional tip–substrate bonds.
In the present work, we go one step further and introduce a
minimalistic model, which allows one to account quantitatively
for this effect, and whose predictions are in a good agreement
with the experimental data for all pulling velocities probed
experimentally.

2. Analysis of the experimental data

During each stick phase, the elastic force is known to increase
linearly with time (see figure 2(b)),

fn(t) = κ(vt − na) + � f, (5)

where v is the pulling velocity, a is the lattice constant, κ is
the effective spring constant, describing the combined effect
of the elastic deformation of the cantilever, the surface in the
contact region, and the curvature of the tip–sample interaction
potential [17, 25], and � f is some additive constant. With
the change of variables (5), we find from the rate equation (2)
that the no-jump probability pv( f ) up to the force f at a
pulling velocity v decays as κv dpv( f )/d f = −ω( f ) pv( f ),
where we have dropped the redundant index n, as this no-jump
probability in the force domain is the same for all stick phases.
Given the initial condition that the tip was in a given potential
well at the force value f0 (i.e. p( f0) = 1), the solution of this
equation reads

pv( f ) = exp

(
− 1

κv

∫ f

f0

d f ′ω( f ′)
)

. (6)

Given the number Nv( f ) of stick phases which ended at
force values greater than f at velocity v, the best experimental
estimate for the probability of staying within the same well up
to the force f is given by

p̃v( f ) = Nv( f )/Nv( f0). (7)

Here and in the following, a tilde indicates an experimental
estimate for the corresponding ‘true’ quantity without a tilde,
towards which it converges (with probability 1) for Nv( f0) →
∞.

We now come to the central point of this section, namely
the simple observation that, according to (6), the function

gv( f ) := −κv ln pv( f ) =
∫ f

f0

d f ′ω( f ′) (8)

is in fact independent of the pulling speed v. The convergence
of the experimental estimate

g̃v( f ) = −κv ln p̃v( f ) = −κv ln[Nv( f )/Nv( f0)] (9)

to its true value (8) is not uniform, because for any pulling
velocity v, the majority of slip events occur in a rather limited

force interval around the most probable slip force, which
logarithmically increases with pulling velocity. However,
by properly exploiting the velocity independence of the g-
function, it is possible to reliably estimate g( f ) over a wide f -
range by combining data for several different pulling speeds v.

Consider an arbitrary but fixed f > f0. Then, the
reliability of the estimate (9) is quantified by the variance
σ̃ 2[g̃v( f )], whose explicit determination will be given shortly.
With this amount of information at our disposal, according
to the so called method of weighted averages [26], the best
guess for the ‘true’ g( f ) is represented by that argument
x which minimizes the weighted sum of square deviations∑

v[x − g̃v( f )]2/σ̃ 2[g̃v( f )], where
∑

v indicates a summation
over all pulling velocities v probed experimentally [23]. In
other words, this best guess for g( f ) is given by the weighted
average

g̃( f ) =
∑

v

cv( f ) g̃v( f ), (10)

cv( f ) := 1

σ̃ 2[g̃v( f )]
/ ∑

v

1

σ̃ 2[g̃v( f )] . (11)

In order to determine the variances σ̃ 2[g̃v( f )], we consider the
number Nv( f ) = pv( f ) Nv( f0) of stick phases surviving up
to the pulling force f . It follows that for any fixed f , v, and
Nv( f0), the number Nv( f ) is distributed binomially according
to

W (Nv( f )) = [pv( f )]Nv( f )[1 − pv( f )]Nv( f0)−Nv( f ) Nv( f0)!
Nv( f )![Nv( f0) − Nv( f )]! ,

(12)
implying for the associated variance σ 2[Nv( f )] the result

σ 2[Nv( f )] = Nv( f0) pv( f )[1 − pv( f )]. (13)

An estimate σ̃ 2[Nv( f )] for the ‘true’ σ 2[Nv( f )] follows on
replacing the ‘true’ but unknown pv( f ) in (13) by the estimate
exp[−g̃( f )/(κv)] (see (6), (8)). Then, by exploiting the error
propagation law σ̃ 2[g̃v( f )] = [dg̃v( f )/dNv( f )]2 σ̃ 2[Nv( f )]
and (9), one finds for the coefficients cv in (11) the result

cv( f ) = Nv( f0) p̃2
v( f ) eg̃( f )/v

v2 [1 − e−g̃( f )/v] σ 2[g̃( f )] (14)

σ 2[g̃( f )] :=
(∑

v

Nv( f0) p̃2
v( f ) eg̃( f )/v

v2 [1 − e−g̃( f )/v]

)−1

. (15)

Finally, by taking into account (11) one readily verifies that
σ 2[g̃( f )] from (15) does indeed coincide with the variance∑

v c2
v σ̃ 2[g̃v( f )] describing the statistical uncertainty of g̃( f )

in (10).
In practice, the above method reduces to the following two

steps. First, the functions p̃v( f ) and g̃v( f ) are determined
from the experimentally observed rupture forces fn , n =
1, . . . , Nv( f0), for different pulling speeds v according to (7)
and (9). Second, the weighted average (10), (14) is evaluated.
Since the coefficients cv( f ) in (10) depend themselves on
the unknown quantity g̃( f ) according to (14), we are dealing
with a transcendental equation for g̃( f ) for any fixed f -value.
Among many other well-known methods for solving such an
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equation, one particularly simple way is to iteratively update
the value of g̃( f ) on the basis of (10) until stationarity is
reached. The result is an estimate g̃( f ) for the ‘true’ function
g( f ) in (8) together with its statistical uncertainty (15). Once
a specific f -dependence of the rate ω( f ), as e.g. in (3), (4),
is assumed, it is possible to decide using (8) whether this
assumption is compatible with the measured data and to
determine the fit parameters. In addition, one can check
whether the functions g̃v( f ) for different pulling velocities v

do indeed collapse within their statistical uncertainties onto a
single master curve. If this is not the case, it follows that the
basic kinetic law (2) does not describe the experimental stick–
slip data adequately.

3. Experiment

The friction force experiments were conducted with a
commercial AFM (Omicron VT-AFM) under the pressure
of 2 × 10−10 mbar at room temperature. The sample was
highly oriented pyrolytic graphite (HOPG) cleaved in the
load lock in vacuum at p = 10−9 mbar shortly before
the AFM experiments. As force sensors, we used single-
crystalline rectangular silicon cantilevers (LFMR type, from
Nanosensors) of width 43 μm, length 229 μm and tip
height 15 μm. Their thickness was determined from the
resonance frequency of the normal oscillations in vacuum [27].
The normal and torsional spring constants of the cantilever
were calculated from the geometric dimensions [28] yielding
0.18 N m−1 and 19.0 N m−1, respectively (with the E-modulus
169 GPa and shear modulus 50 GPa). We calibrated the lateral
force sensitivity of the AFM using a procedure analogous
to the one described in [18, 29]. The tip–sample adhesion
force was determined from the average jump-off-contact value
Foff = 11.2 nN. Since an additional load of Fload = 33.4 nN
was applied, the effective load during the friction experiments
was Foff + Fload = 44.6 nN.

Larger areas (1 μm × 1 μm) of the HOPG sample were
first scanned in order to verify that a flat and homogeneous
part of the surface with no steps was investigated. Smaller
scan areas of 3 nm × 3 nm were used to identify atomic
jump processes; see figure 2(a). The stick–slip phenomenon
is observed via the friction force contrast with atomic unit-
cell periodicity of the surface. A typical friction signal
for a single scan line is shown in figure 2(b) revealing the
expected sawtooth-type behavior. The velocity dependence of
the friction forces was measured in the range from v = 20 to
200 nm s−1.

The individual carbon atoms form hexagonal rings
arranged in a honeycomb structure [30]. During the scan,
the tip jumps in between the local energy minima located at
the centers of the carbon rings (‘hollow sites’ [30] appearing
as ‘humps’ in figure 2(a)). We oriented the sample in such
a way that the fast scan direction (x-direction) scans along
the (1̄, 2, 1̄, 0) direction of the (0001) HOPG surface. This
ensures that predominantly jumps along the fast scan direction
are observed [18]. Since the surface potential varies along the
y-axis even within one hollow site, we use for our analysis only
the scan lines from the equivalent y-positions at the centers

of the hollow sites. Those positions are indicated with the
horizontal lines in figure 2(a).

4. Results

A typical stick–slip scan line contained 10–12 slip events;
see figure 2(b). While the moments tn of the slip events can
be readily identified as almost instantaneous force drops, the
forces themselves require a more careful consideration. As
seen in figure 2(b), the experimentally observed force evolution
fexp(t) is composed of random fluctuations due to thermal
and instrumental noise, whose details strongly depend on the
experimental set-up, and linearly increasing regular segments,
which represent the force f entering the theory (2)–(8). Hence,
the random forces have to be separated from the regular ones
in the experimental data before comparison with the theory. To
this end, we fitted the measured fexp(t) in figure 2(b) with a
piecewise linear function of the form (5), increasing its index n
at every previously determined slip instant tn . As a result, each
scan line yields an estimate for the unknown fit parameters
in (5), namely the effective spring constant κ and the lattice
constant a. Moreover, evaluating the fitting function at the slip
times tn yields the force values at the end of every stick phase,
indicated by the circles in figure 2(b), and required to evaluate
the theoretical quantities in (6), (8) and also in (23) below.

By fitting a and κ for each scan line, the former was
found to vary only insignificantly around the mean value a �
0.26 nm, while the latter fluctuated by about 8% (standard
deviation) around the mean value κ � 0.93 N m−1. These
variations can be understood as a signature of the complicated
behavior of the tip–substrate contact, considering that the tip
apex is particularly prone to changes at the very beginning of
every scan line and that the tip–substrate contact significantly
influences the relevant effective spring constant κ [25, 31].

As outlined above, our main goal is to check by means
of (8) whether the individual slip events can be viewed as
single-step transitions (2). Note that the force dependence of
the rate ω( f ) in (3) is quite sensitive to changes of the effective
spring constant κ , and in (8) it is tacitly assumed that only one
fixed value of κ exists. Due to the above-mentioned variability
of κ we thus cannot use all available stick–slip data, but rather
have to restrict ourselves to a subset for which κ is confined
to a narrow window around some specific value. We have
processed data sets for several such values of κ and found
practically the same results for all of them. In the following,
we report our findings for 0.92 N m−1 � κ � 0.94 N m−1.

As shown in figure 3(a), the measured functions g̃v( f ) do
indeed collapse onto a single master curve, provided that the
pulling velocities are sufficiently high, v > 90 nm s−1. On the
other hand, no such collapse is observed in the low-velocity
range (see figure 3(b)), where the experimental g-function
increases with increasing pulling velocity. This result indicates
the inapplicability of the rate theory (2) to the description of the
stick–slip process at slow pulling. In the following section we
amend the model (2) to adequately describe the experimental
results for all pulling velocities.

4
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Figure 3. The experimentally measured functions g̃v( f ) from (9) for different pulling velocities, v, as specified in the legends, for zero initial
force, f0 = 0, and for the effective spring constants 0.92 N m−1 � κ � 0.94 N m−1. The smooth solid lines are theoretical fits, using the
model described in section 5.

Figure 4. Schematic representation of the proposed model of the
tip–sample contact.

5. Modeling

The lack of universal behavior of the g-function for slow
velocities (figure 3(b)) indicates the inapplicability of the
single-step rate description (2) and suggests that some other
process besides thermal activation plays a significant role in
this regime, while at fast pulling, thermal activation takes
over. In the spirit of [21, 22], it has been hypothesized [24]
that a possible candidate for such a process is multiple-
bond formation for the tip–substrate contact. More precisely,
formation of additional bonds takes finite time, so that at fast
pulling, new bonds do not have sufficient time to develop
during a single stick phase. This leaves in effect a single tip–
substrate contact, whose rupture is well described by the rate
equation (2), resulting in the collapse of the measured functions
g̃v( f ) onto a single master curve, figure 3(a).

To quantify these ideas, we introduce the following
minimalistic model. We assume that, in a given stick phase, the
tip–sample contact may either break, resulting in a slip event,
or strengthen itself by means of forming new bonds; the latter
possibility can be termed ‘contact ageing’.

To account for this effect, we assume for simplicity that
the contact can exist in only two different states, a strongly
and a weakly bound one, characterized by two different off-
rates ωi ( f ), and the respective occupation probabilities pi( f ),
i = 0, 1. Here, the value of the subscript i = 0 refers to
the initial weakly bound state of the contact, and i = 1 to

Figure 5. Circles: the combined function g̃( f ) based on the
experimental g-curves for 90 nm s−1 < v � 200 nm s−1. Solid line:
theoretical fit using (23).

the strongly bound state. We further assume that the contact
can enter the strongly bound state 1 from the originally formed
weakly bound state 0 at a rate � independent of the value of
the force. At the same time, the back-transitions 1 → 0 are
neglected. Our model is schematically illustrated in figure 4.

Within our simplified model, the single-step rate
equation (2) describing the state of the contact should be
replaced by two rate equations for the probabilities p0, p1:

ṗ0(t) = − [
� + ω0

(
f (t)

)]
p0(t),

ṗ1(t) = �p0(t) − ω1
(

f (t)
)

p1(t)
(16)

with the initial condition

pi(0) = δi0. (17)

In each stick phase, the force increases linearly (cf (5)):

f (t) = κvt + f0, (18)

5
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allowing one to go from the time to the force domain:

p′
0( f ) = − 1

κv

[
� + ω0( f )

]
p0( f ),

p′
1( f ) = 1

κv

[
�p0( f ) − ω1( f )p1( f )

]
.

(19)

From these equations, one obtains for the respective
probabilities for finding the contact in the states 0 and 1 at the
force f the explicit analytical results

p0( f ) = exp

[
− 1

κv

(
�( f − f0) +

∫ f

f0

d f ′ω0( f ′)
)]

,

p1( f ) = �

κv

∫ f

f0

d f ′ p0( f ′) exp

(
− 1

κv

∫ f

f ′
d f ′′ω1( f ′′)

)
.

(20)
The off-rates for the two states are assumed to be given by
(cf (3), (4))

ωi ( f ) = νi exp

[
−�Ei

kBT

(
1 − f

Fi

)αi
]

, i = 0, 1.

(21)
Since the probability of finding the tip in any bound state

0 or 1 is p0 + p1, the experimental g-function (9) should be
compared not with the single-step result (8), but with

gv( f ) = −κv ln
[

p0( f ) + p1( f )
]
. (22)

In the limit of pulling velocities so high that new bonds do not
have time to form in each stick phase, the tip remains in the
state 0 throughout the whole stick phase with overwhelming
probability, so the theoretical g-function (22) simplifies to a
velocity-independent expression similar to (8):

g∞( f ) = −κv ln p0( f ) =
∫ f

f0

d f ′ω0( f ′)

= ν0 F0

α0

(
kBT

�E0

)1/α0
{
γ

(
1

α0
,
�E0

kBT

(
1 − f0

F0

)α0
)

− γ

(
1

α0
,
�E0

kBT

(
1 − f

F0

)α0
)}

, (23)

where in the second line, the integral is evaluated explicitly for
the rate ansatz (21). Here, γ (a, x) := ∫ x

0 dye−y ya−1 is the
incomplete gamma function; it can be calculated numerically
using an efficient algorithm, e.g., that from [32].

6. Fitting procedure

The theory from the previous section contains nine fit
parameters, eight characterizing the rates ω0,1( f ) (namely,
νi ,�Ei , Fi , and αi , with i = 0, 1), and the 0 → 1 transition
rate �. Their determination proceeds consecutively in the
following steps.

First, using (10), (14), (15), we have combined the
g-curves in the high-velocity range (figure 3(a)) into a single
master curve using the method of weighted averages, which
also allows one to calculate the statistical uncertainty of the
combined g-function. The plot of the g-function together with
the error bars is presented in figure 5. The combined g-function

from figure 5 is fitted using the high-velocity asymptotic
formula (23) with the following values of the resulting fit
parameters:

�E0 = 24 kBT = 97.2 pN nm;
F0 = 0.19 nN;

α0 = 2.4;
ν0 = 12 000 s−1.

(24)

The fitting curve is presented in figure 5 as a solid line. The
discrepancy between these values and the ones reported in [24]
can be attributed to the fact that in the work [24], it was
not the g-function that was fitted, but rather the rate ω( f ),
which was obtained by means of numerical differentiation of
the experimental g̃( f ). Since this derivative was evaluated
numerically using a finite-difference scheme, the rate fit
contained an additional source of error in the resulting fit
parameters.

We observe that our exponent α0 differs significantly from
the often assumed value 3/2. This can be explained as follows.
The exponent α in the Kramers rate (3), (4) is directly related
to the shape of the potential energy landscape of the tip as
a function of its position. Approximating it with a cubic
polynomial [14, 15] leads to the value α = 3/2; on the other
hand, quadratic approximation [34] leads to the value α =
2. Our results (24) suggest that the quadratic approximation
represents the tip potential more accurately than the cubic
polynomial.

It remains to determine five theoretical values, namely,
�, ν1, �E1, F1, and α1. To reduce their number, we make
the following additional assumptions: (i) we assume that the
overall geometry of the tip energy landscape in contact with
the surface is the same in both states; (ii) the critical force
is directly proportional to the barrier height with the same
proportionality coefficient for each state; (iii) as within the
Kramers theory of thermally activated escape [19], we assume
that the prefactor νi is proportional to the value

√
U ′′

min |U ′′
max|,

where U ′′
min and U ′′

max denote the curvatures of the tip energy
landscape at the two extrema. These three assumptions can be
expressed mathematically as

α1 = α0;

F1 = �E1

�E0
F0;

ν1 = �E1

�E0
ν0,

(25)

leaving only two unknown fit parameters, �E1 and �. Their
values are determined from the g̃v( f )-curves in the low-
velocity range (figure 3):

�E1 = 32 kBT = 129.6 pN nm;
� = 10 s−1.

(26)

The reasonable agreement of the fitting curves (20)–(22) with
the parameters (24)–(26) with the experimental results at low
velocities is clear from figure 3. From the second equation (26)
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we conclude that the typical time for the formation of new
bonds is of the order of 1/� = 100 ms. This number can be
compared with the duration of the stick phase τstick = a/v � 3
ms at the slowest pulling velocity v = 91 nm s−1, for which
the validity of the rate equation (2) has been verified; see
figure 3(a).

7. Concluding remarks

Although the theoretical and experimental g-curves in figure 3
are in reasonable agreement with each other, the discrepancy
between the two sets of data is quite noticeable. This is
because the theory presented in section 5 together with the
simplifying assumptions (25) provides only a crude description
of the contact ageing process, and captures only its most salient
feature: changing of the contact properties in time. This crude
description can be refined in several ways.

While our model uses only two contact states of the
cantilever (see figure 4), one can generalize this approach
and introduce additional contact states, all characterized by
different occupation probabilities pi( f ) and off-rates ωi ( f ).
In addition, the rate parameters for each such state can be
considered as random variables, with respect to which the final
no-jump probability

∑
i pi( f ) has to be averaged [33].

Unfortunately, these amendments to the model (16) will
most likely make it impossible to solve the resulting rate
equations analytically, while within our simplified description,
such an analytic solution is still possible; see (20)–(22).
Even worse, making the above-mentioned amendments to
the model (16) means introducing a number of new fit
parameters, whose reasonably accurate determination based on
the experimental data may be questionable.

Despite its crude simplifications, our analysis shows
clearly that contact ageing plays an important role in realistic
friction force experiments. The simple model presented, which
can still be solved analytically, captures the essential features
of this process.
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